Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization
نویسندگان
چکیده
Large scale penetration of renewable energies such as wind and solar into the electric grid is complicated by their intermittency. Energy storage systems can mitigate these fluctuations by storing off-peak energy for use at peak-demand times. Compressed air energy storage (CAES) is one of the most promising storage technologies due to the large amount of energy that can be stored at an economical cost. We evaluate the feasibility of improving the economics of CAES by distributing compressors near heat loads to enable recovery of the heat of compression to supply low-grade heating needs such as district heating. Distributed CAES (DCAES) is more efficient; however, it has higher capital costs due to the compressed air pipeline required between distributed compressors and the storage site. We evaluate the project economics of DCAES in a hypothetical scenario with a variable electric and heat load. The size and dispatch of a generation fleet composed of a wind farm, CAES or DCAES plant and conventional gas turbines are optimized to satisfy the annual electricity load at an hourly resolution at the lowest total cost. We find that the total cost of supplying heat and electric loads is less expensive with DCAES given a 50 km pipeline when fuel prices exceed $7.6/GJ. The cross-over fuel price depends on the distance as it drives the capital cost of the pipeline. The minimum effective fuel price required for economic superiority of the DCAES system is $7.0/ GJ and $8.3/GJ at pipeline lengths of 25 and 100 km, respectively. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Thermodynamic Analysis of a Compressed Air Energy Storage Facility Exporting Compression Heat to an External Heat Load
Fluctuations of electric load call for flexible generation technologies such as gas turbines. Alternatively, bulk energy storage (BES) facilities can store excess off-peak electricity to generate valuable peaking electricity. Interest in electricity storage has increased in the past decade in anticipation of higher penetration levels of intermittent renewable sources such as wind. Compressed Ai...
متن کاملThermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC
Abstract: The compressed air energy storage (CAES) system, considered as one method for peaking shaving and load-levelling of the electricity system, has excellent characteristics of energy storage and utilization. However, due to the waste heat existing in compressed air during the charge stage and exhaust gas during the discharge stage, the efficient operation of the conventional CAES system ...
متن کاملCompressed air energy storage with waste heat export: An Alberta case study
Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline ...
متن کاملThermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled
We present analyses of three families of compressed air energy storage (CAES) systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latte...
متن کاملAnalysis and Optimization of a Compressed Air Energy Storage - Combined Cycle System
Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional ...
متن کامل